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Abstract Self-avoiding walk models of a polymer confined between two parallel
attractive walls in two and three dimensions (slits and slabs, respectively) have recently
had a revival of interest. They were first studied as simple models of steric stabilisation
and sensitised flocculation in colloids. The revival has been catalysed by new exact
solution techniques, that have allowed the solution of directed walk models in two
dimensions in full generality, and by new Monte Carlo techniques that have allowed
the simulation of the full parameter space in the three-dimensional slab model. Addi-
tionally, rigorous techniques applied to the slab problem have also yielded new results.
The contributions to the study of this problem that have been recently added include a
novel phase diagram for the “infinite-slab” (when the walls are a macroscopic distance
apart but both walls may still “see” the polymer) the delineation of the repulsive and
attractive regimes of the parameter space, and a conjectured scaling theory for the
problem in general dimensions.
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1 Introduction

Self-avoiding walks are a common model of flexible polymers in solution [1]. Con-
fining self-avoiding walks between two parallel walls where the walks interact with
the walls can be considered a simple model of the steric stabilisation and sensitised
flocculation of colloidal dispersions [2] by polymers. Both the two-dimensional case
of a polymer in a slit and the three-dimensional case of a polymer in a slab have
been studied. The seminal work of DiMarzio and Rubin [3] sparked the study of these
problems. However, quite a bit of the work completed was concerned with the case
of non-interacting walls [4–7]. The work of Daoud and de Gennes [8] is also relevant
as they developed scaling laws for polymers in confined spaces. When there is an
energetic interaction with the walls, the cases of a single attractive wall and equal
interactions with the two walls have been investigated [3,9–13]. Importantly, the full
phase space when the interactions with the two walls are allowed to vary indepen-
dently has not received attention until recently [14–17]. Here we review the work on
the full problem described in those four papers: the solution of a two-dimensional
integrable model by Brak et al. [14]; rigorous results by Janse van Rensburg et al. [16]
valid in any dimension; and numerical studies and scaling conjectures concerning the
three-dimensional slab problem in the two papers by Janse van Rensburg et al. [15]
and Martin et al. [17].

To begin we define the full three-dimensional lattice model which is the subject of
the two papers by Janse van Rensburg et al. [15] and Martin et al. [17]. Consider the
simple cubic lattice with coordinate system (x, y, z) so that each vertex has integer
coordinates. Consider n-edge self-avoiding walks starting at the origin with verti-
ces numbered j = 0, 1, 2, . . . n and with the j th vertex having integer coordinates
(x j , y j , z j ). We shall be interested in such walks confined so that 0 ≤ z j ≤ w for
fixed w. If we keep track of how many vertices are in each of the two planes z = 0
and z = w we can define the partition function:

Zn(a, b;w) =
∑

u≥0

∑

v≥0

cn(u + 1, v;w)aubv, (1.1)

where cn(u + 1, v;w) is the number of n-edge self-avoiding walks, starting at the
origin, confined between the two planes z = 0 (bottom wall) and z = w (top wall),
with u + 1 vertices in z = 0 and with v vertices in z = w. The variables a and b
are then Boltzmann factors associated with vertices in the planes z = 0 and z = w,
respectively. For a > 1 and b > 1 an attractive potential is felt by the monomers of the
our polymer, modelled by the vertices of the walk, visiting the bottom and top walls,
respectively. We define the finite-size finite-slab free energy κn as

κn(a, b;w) = n−1 log Zn(a, b;w) (1.2)

and the thermodynamic limiting finite-slab free energy as

κ(a, b;w) = lim
n→∞ n−1 log Zn(a, b;w). (1.3)
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As we shall see below this limit exists [16]. One may then consider the behaviour of
κ(a, b;w) in the limit as the width tends to infinity: we shall refer to this limit as the
infinite slab limit and define the infinite slab free energy, κ(a, b), as the point-wise
limit

κ(a, b) = lim
w→∞ κ(a, b;w). (1.4)

One can then explore the location of singularities in κ(a, b) and it is the loci of these
singularities that determine the phase diagram of the infinite-slab in the (a, b)-plane.
Physically, taking the polymer length limit first means that we are investigating the
thermodynamics of macroscopic polymers in slabs of mesoscopic widths.

The w-dependence of κ(a, b;w) determines if the force exerted by the walk on the
confining walls is repulsive or attractive. The force at finite polymer length is defined
as

Fn(a, b;w) = κn(a, b;w) − κn(a, b;w − 1) (1.5)

while the thermodynamic limit is

F(a, b;w) = lim
n→∞ Fn(a, b;w) = κ(a, b;w) − κ(a, b;w − 1). (1.6)

Hence if κ(a, b;w) is an increasing function of w the force is repulsive while if it is
a decreasing function of w the force is attractive. The scaling theory of Daoud and de
Gennes [8] predicts that when a = b = 1

F(a, b;w) ∼ C

w(1+1/ν)
as w → ∞, (1.7)

where ν is the radius of gyration exponent for self-avoiding walks in three dimensions.
There is a second double limit of the finite free energy, κn(a, b;w), where the

length and width limits are exchanged. This more traditional case gives us the half-
space model which describes the adsorption of polymers on a single wall. Since we
are considering self-avoiding walks that are attached to the surface where the sites
are weighted with the Boltzmann weight a the limit of large width for fixed length is
independent of the Boltzmann weight b: the partition function then simply becomes
that of a self-avoiding walk attached to the surface in a half-space. Hence if we define

κ̄n(a) = lim
w→∞ n−1 log Zn(a, b;w), (1.8)

then the infinite length limit of κ̄n(a), that is,

κ̄(a) = lim
n→∞ κ̄n(a), (1.9)

gives us the thermodynamic free energy, κ̄(a), of the half-space. This free energy κ̄(a)

has a single singularity at an adsorption transition a = ac [18], where the current
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best estimate is ac ≈ 1.33 [19]. In fact, it has been previously proved [18] that κ̄(a)

is constant for a ≤ ac and is given by the value log µ3, that is, the logarithm of the
growth constant for unconfined self-avoiding walks in three dimensions. This adsorp-
tion transition can be characterised by considering the density of visits to the wall,
ρ(a), where

ρ(a) = lim
n→∞

〈u〉
n

, (1.10)

which acts as an order parameter for the phase transition. For a ≤ ac we have that
ρ = 0 while for a > ac we have ρ > 0, and ρ → 0 as a → a+

c as the transition is
a second-order phase transition. It is therefore a central question to compare the two
double limits of the half-space κ̄(a) to the infinite slit κ(a, b): this is precisely what
has been done in the four papers reviewed herein.

The standard scaling hypothesis for self-avoiding walks attached to a surface [20]
in the half-space predicts

κ̄n(a) ∼ κ̄(a) + (γ1 − 1)
log n

n
+ A(a)

n
as n → ∞. (1.11)

The (universal) value of γ1 depends on whether a < ac, a = ac, or a > ac [20]. For
a < ac the exponent γ1 has been estimated as 0.68 [20]. For a = ac the exponent γ1
is often denoted by γ1,s . Previously, it was known imprecisely as 1.5(2) [20], and the
value used in the scaling plots of Martin et al. [17] found that 1.25 was an effective
estimate. For a > ac the half-space exponent γ1 in three dimensions takes on the
“bulk” two-dimensional value 43/32 [21]. In a slab of any finite width one expects
two-dimensional behaviour to eventuate so that

κn(a, b;w) ∼ κ(a, b;w) + (γ − 1)
log n

n
+ B(a, b;w)

n
as n → ∞, (1.12)

where once again γ = 43/32 regardless of a and b. The question then arises as to the
scaling form in the two variables polymer length, n, and slab width, w, for κn(a, b;w):
this was discussed by Martin et al. [17] and we summarise their conjectures below.

We continue by discussing the exact results of Brak et al. [14] on a two-dimensional
integrable model in the next section. It was this work that motivated the renewed inter-
est in the three-dimensional slab problem, and it proves remarkable, at least on first
sight, how many of the features of the exact solution have shown up in the analysis
of the three-dimensional model. After that we discuss the rigorous results, derived in
arbitrary dimension, concerning the existence and analyticity properties of the limiting
free energy found Janse van Rensburg et al. [16] before moving onto to discussing the
numerical results on the phase and force diagrams for the infinite slab as well as the
scaling theory for finite slabs. We end with a brief summary.
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2 Exact solution of the directed model in a slit

In this section we review the main results of an exactly solved model of directed paths
in a slit of width w. While these results appear in [14], we will use a different com-
binatorial construction to derive them. In particular, a Temperley-like argument gives
a functional equation which we will then solve using the kernel method (see [22] and
references therein). Importantly, the results summarised below provide the impetus
for the work on undirected walks in three-dimensional slabs, described in the next
section.

Consider paths on Z
2 confined to the strip 0 ≤ y ≤ w that start at (0, 0), and take

steps (1,±1). We define a generating function for these walks by

f (s; z; a, b) =
∑

ϕ

sh(ϕ)z|ϕ|avl (ϕ)bvu(ϕ) =
w∑

k=0

fk(z; a, b)sk, (2.1)

where the first sum ranges over all directed walks confined to the slit, z is conjugate
to the length of walk, a, b are conjugate to the number of visits to the top and bottom
walls of the slit and s is conjugate to the height of the final vertex. The function fk

is the generating function of the subset of walks that end at height k. In the analysis
that follows we will primarily concern ourselves with loops which are walks that end
at height 0 and so are counted by Lw(z; a, b) ≡ f0(z; a, b) = f (0; z, a, b). One
can show that fixing the height of the last vertex of the walk does not change the
thermodynamic (n → ∞) free-energy of the system.

We compute f (s; z; a, b) ≡ f (s) by constructing walks a single step at a time;
every directed walk in the strip is either a single vertex or can be obtained by adding
a step (in the (1,±1) directions) to a shorter walk. When adding steps to a shorter
walk we have to exclude those configurations which step outside the strip—see Fig. 1.
We define the notation s̄ = 1/s. The single vertex contributes 1 to the generating
function. Adding a single step to an existing walk contributes z(s + s̄) f (s), however
this includes some configurations that leave the strip. A walk that takes a single step
below the line y = 0 contributes zs̄ f0 and one that steps above the line y = w is given
by zsw+1 fw. This leads to the equation

f (s) = 1 + z(s + s̄) f (s) − z f0 − zsw fw, (2.2)

Fig. 1 Every walk is either a single vertex or can be obtained by adding a (1, ±1) step to a shorter walk.
When appending these steps one must remove the contribution from the walks that step outside the strip
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valid for a = b = 1. However, this does not take into account the newly generated
visits to either wall. A walk that steps down onto the bottom wall is counted by za f1
(since it steps from height 1 to height 0) and similarly a walk that steps up to the top
wall is counted by zb fw−1. These walks have already been counted by the z(s+ s̄) f (s)
term but without the weights a and b, so we must remove the incorrectly weighted
contributions and then replace them by the correct weight. This gives

f (s)=1+z(s + s̄) f (s)−z f0−zsw fw + z(a − 1) f1+zsw(b − 1) fw−1. (2.3)

This is a single equation in 5 “unknowns”. We can remove two of these unknowns by
examining the coefficients of s0 and sw:

f0 = 1 + z f1 + z(a − 1) f1 = 1 + za f1, (2.4a)

fw = z fw−1 + z(b − 1) fw−1 = zb fw−1. (2.4b)

Rewriting the main equation in terms of f (s), f0 and fw gives

[
1 − z

(
s + 1

s

)]
f (s) = 1

a
+

(
1 − 1

a
− zs̄

)
f0 +

(
1 − 1

b
− zs

)
sw fw. (2.5)

The coefficient of f (s) in the above equation is called the kernel. We proceed by
substituting values of s that set the kernel to zero:

s = σ± = 1 ± √
1 − 4z2

2z
. (2.6)

We note that σ− = z + O(z3) and σ+ = z−1 + O(z) and that σ+σ− = 1. Typically
when applying the kernel method, one would only make use of those kernel roots that
are formal power series such as σ−. However, we note that since the coefficient of zn

is a polynomial in s of degree min{n, w}, substituting s = σ+ also results in formal
power series. This gives two linear equations involving the unknowns f0 and fw:

0 = 1

a
+

(
1 − 1

a
− z

σ±

)
f0 +

(
1 − 1

b
− zσ±

)
σw± fw. (2.7)

Solving these gives

Lw(z; a, b) ≡ f0

= (σ 2− + 1)
(
(σ 2− + 1 − b)σ 2w− + (σ 2−b − σ 2− − 1)

)

(σ 2− + 1 − b)(σ 2− − a + 1)σ 2w− − (σ 2−b − σ 2− − 1)(aσ 2− − σ 2− − 1)
(2.8)

and a similar expression for fw. We have used the fact that σ+σ− = 1 and 1 =
z(σ− + σ−1− ). Further, if we write q = σ 2− then we recover Eq. 5.7 from [14].

The dominant singularity of Lw determines the free-energy of the underlying phys-
ical system. The singularities of f0 are the zeros of its denominator and, possibly, the
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square-root singularity of σ− at z = 1/2. It can be proved that f0 is rational in z and
hence has no algebraic singularities, only poles. Hence the singularities in z (and so
q) are poles. The zeros of the denominator are given by the solutions of

qw = (bq − q − 1)(aq − q − 1)

(q − b + 1)(q − a + 1)
, (2.9)

which we note is symmetric in a ↔ b. Note also that if one solves the problem where
walks end at some general height then exactly the same singularities appear—hence
all these problems have the same thermodynamic free-energy.

The expression for Lw simplifies considerably at the points a, b ∈ {1, 2} and along
the curve ab = a + b (see [14]), and at these points one is able to find the dominant
singularity, and so the free-energy, in closed form:

κ(1, 1;w) = log (2 cos(2π/(w + 2))); (2.10a)

κ(1, 2;w) = κ(2, 1;w) = log (2 cos(π/(w + 1))); (2.10b)

κ(2, 2;w) = log 2; (2.10c)

and along the curve ab = a + b

κcurve(w) =
⎧
⎨

⎩
log

(
a√
a−1

)
for a ≥ b;

log
(

b√
b−1

)
for a < b.

(2.10d)

It is important to note that these last two expressions for the free-energy are indepen-
dent of w. This implies that along the curve ab = a + b (which includes the point
(2, 2)) the thermodynamic limit of the system is independent of the width of the strip.

Turning to general (a, b), Brak et al. [14] were unable to find closed form expres-
sions for the solutions of Eq. 2.21 but they were able to find asymptotic expansions
for large w by perturbing around the exactly solved points in descending powers of w.
This gives

κ(a, b;w) = log(2) − π2

2w2 + O(w−3) for a, b < 2, (2.11a)

κ(a, 2;w) = log(2) − π2

8w2 + O(w−3) for a < 2, (2.11b)

κ(a, b;w) = log

(
a√

a − 1

)
+ (a − 2)2(ab − a − b)

2(a − 1)(a − b)

(
1

a − 1

)w

+O

(
w

(a − 1)2w

)
for a > max{b, 2}, (2.11c)

κ(a, a;w) = log

(
a√

a − 1

)
+ (a − 2)2

2(a − 1)

(
1

a − 1

)w/2

+ O

(
w

(a − 1)w

)
for a = b > 2, (2.11d)
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and the relations obtained by the manifest a ↔ b symmetry of the problem in the
large length limit, as noted above in the symmetry of Eq. 2.21.

As explained in the introduction, taking the limit of these expressions as w → ∞
one arrives at the infinite-slit limit (in which we have let the length of the polymer go
to infinity before the width of the slit). The free energy is then given by

κ(a, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

log 2 for a, b ≤ 2,

log
(

a√
a−1

)
for a > max{b, 2},

log
(

b√
b−1

)
otherwise.

(2.12)

On the other hand, if we let w → ∞ before we let the length of the polymer
go to infinity, then we effectively remove the top wall (see above). This leads to the
following functional equation satisfied by the generating function:

f (s) = 1 + z(s + s̄) f (s) − zs̄ f0 + z(a − 1) f1. (2.13)

Repeating the kernel method one can obtain the generating function, L(z, a), of di-
rected paths that start and end on the line y = 0 and interacting with that line:

L(z, a) = 1 + σ 2−
1 + σ− − aσ−

. (2.14)

Note that this is independent of b. This function has two singularities: the square-root
singularity of σ− at z = 1/2 and a simple pole at the zero of the denominator. The
free-energy is then

κ̄(a) =
{

log 2 for a ≤ 2,

log
(

a√
a−1

)
for a > 2.

(2.15)

The expression (2.15) shows there is a single second-order phase transition at a = 2
with a jump in the second-derivative with respect to the fugacity a on crossing the
transition (i.e. a jump in the specific heat). It is an adsorption transition where the
polymer has a zero thermodynamic density of visits to the wall, ρ(a), for a < 2
(calculated from a the first derivative of the free energy with respect to a) and a finite
density for a > 2. The expression (2.12) for the infinite-slit, and its derivatives by a
and b, giving the density of visits to each of the walls, imply that for a, b < 2 the
polymer is desorbed from both walls. For a > max{2, b} the polymer is adsorbed to
the bottom surface and for b > max{a, 2} the polymer is adsorbed to the top surface.
The two transitions from desorbed to adsorbed on either wall are both second-order
transitions of identical type to the half-plane desorption transition. However, there is
also a first-order transition line between the two adsorbed phases along the line a = b
for a, b > 2. We plot the phase diagrams implied by these two different free-energies
(Eqs. 2.27 and 2.24) in Fig. 2. It is clear that the order in which the polymer length
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Fig. 2 The half-plane and infinite-slit phase diagrams. In the half-plane limit, there are only two phases
separated by a second-order adsorption transition. There are three phases in the infinite-slit limit: a desorbed
phase and two adsorbed phases, one adsorbed to the bottom wall and the other adsorbed to the top wall.
The transition between the two adsorbed phases is first-order

and strip width are taken to infinity produces a large change in the behaviour of the
system. In particular, the two limits do not commute.

Differentiating with respect to w one obtains expressions for the force exerted by
the polymer on the walls of the strip. These expressions imply three distinct regions in
which the system exhibits different behaviour. For a, b ≤ 2 the force is repulsive and
decays as w−3—we interpret this as a long-range force. Outside this square, the force
decays exponentially with w—which we interpret as a short range force. Furthermore,
the sign of the force changes as the curve ab = a + b is crossed. In particular, to the
left of this curve the force is repulsive, on this curve the force is identically zero (since
the free-energy is independent of w, as noted above) and to the right of this curve the
force is attractive. We also note that along the line a = b > 2 the force decays more
slowly than elsewhere in the repulsive region (Fig. 3).

3 Self-avoiding walks in interactive slabs

3.1 Rigorous results for general dimensions

Janse van Rensburg et al. [16] developed new pattern-type theorems for walks on a
d-dimensional hyper-cubic lattice confined between two (d − 1)-dimensional planes.
Here the dimension d ≥ 2. They used these and concatenation arguments to prove
several results concerning such systems. They proved that:

• the d-dimensional analogue of κ(a, b;w) exists for all a and b;
• κ(1, 1;w) = κS AW where κS AW is the bulk connective constant;
• κ(a, 1;w) is a convex function of log a, and so is continuous for a > 0. It is also

differentiable almost everywhere in a for a > 0;
• κ(a, 1) = κ̄(a);
• κ(a, a) = κ̄(a) = κS AW = constant for a < 1;
• κ(a, b) = κ̄(a) if b ≤ 1 and κ(a, b) = κ̄(b) if a ≤ 1.
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Fig. 3 A diagram of the
different regions of force exerted
by the polymer on the walls of
the strip. The long-range
behaviour refers to a power-law
decay, while the short-range
behaviour indicates an
exponential decay. The
zero-force line is given by
ab = a + b. Along the dashed
line a = b there is a change in
the nature of the repulsive force

These results and some other suggestive inequalities point to a phase diagram qualita-
tively the same as that of the directed walk case explored above. They also consequently
showed that for b < 1 and a < 1 that F(a, b;w) is positive and so repulsive for all w.

3.2 Phase diagram for the slab (d = 3)

Monte Carlo data for walks up to length 128 and widths up to 11 was considered by
Janse van Rensburg et al. [15]. In particular the fluctuations in the numbers of visits
to the wall, that is in 〈u〉 and 〈v〉, is reproduced in Fig. 4, as a function of a and b.
The results show strong fluctuations for a = ac, b < bc, for b = bc, a < ac and
for b = a, a > ac. Also, bc ≈ ac. These were interpreted as finite w remnants of
lines of phase transitions in the w → ∞ limit, corresponding to adsorption transitions
on the two walls, and to a transition from adsorption on one wall to adsorption on
the other wall as we cross the line b = a. It was concluded that symmetry implies
bc = ac. This is exactly the same as one sees in the integrable model above given the
caveat that ac takes on a different value. Given the similarity to the integrable case
the interpretation of this data is as follows. There exists a transition value equal to the
half-space adsorption point ac = bc ≈ 1.33 such that for a and b below this critical
point the polymer is desorbed from both walls. For a > max{ac, b} the polymer is
adsorbed to the bottom surface and for b > max{a, ac} the polymer is adsorbed to the
top surface. Hence, there is a transition line between the two adsorbed phases along
the line a = b for a, b > ac. It remained to be seen whether the transition for a = ac,
b < ac and b = ac, a < ac are second-order and exactly of the same type as the
half-space adsorption while the transition along the line b = a, a > ac is first-order
as in the integrable model discussed above.

Martin et al. [17] investigated these questions using Monte Carlo simulations with
walks up to length 512 and slab widths up to 40 lattice spaces. They checked that
the scaling of the peaks of the fluctuations did indeed demonstrate phase transi-
tions in the thermodynamic and large width limits. Given the expected infinite-slab
phase diagram, which is displayed in Fig. 5, four lines were analysed in detail:
(1/2, b), (2, b), (a, 1/2) and (a, 2). The results confirmed the expected phase diagram
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Fig. 4 The largest eigenvalue of the matrix of fluctuations in the numbers of visits to the confining walls
for the simple cubic lattice as a function of a and b

a = b

zero force
curve

desorbed

adsorbed
top

adsorbed
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A
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C

ac
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1

0.5
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2
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Fig. 5 The conjectured infinite-slab phase diagram contains three phases in which the polymer is desorbed,
adsorbed to the bottom surface and adsorbed to the top surface. The corresponding phase boundaries are
indicated with solid lines. The system was simulated along the lines {(a, 1/2), (a, 2), (1/2, b), (2, b)} by
Martin et al. [17] (indicated with dashed lines). The three points A, B and C are those at which we estimate
the scaling function

in Fig. 5 and transition types as described. In particular, they found that the transitions
on the lines (a, 1/2) and (1/2, b) occurred at (1.38(4), 1/2) and (1/2, 1.38(4)) so
indeed the two transition values were the same and equal, within numerical precision,
to the half-space adsorption point. Moreover, the transition was second-order with
a crossover exponent near 0.5 as expected for the single wall adsorption problem.
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Fig. 6 The distribution of contacts with the bottom surface from the simulations along the line (a, 2) where
a was chosen to be at the peak of the variance of contacts with the bottom surface. The value of a used was
1.975, for data produced from simulations at width 12 and polymer length 512

The crossover exponent, φ, is related to the specific heat exponent via the relation
α = 2 − 1/φ. The lines (a, 2) and (2, b) yielded a transition that occurred approxi-
mately at a = 2 and b = 2 respectively, and as expected. Moreover, the convergence
of the peak heights of the fluctuations divided by the square of the length indicate a
crossover exponent of φ = 1, which in turn implies a specific heat exponent α = 1,
that is, a first-order transition. This was confirmed by plotting the distribution of the
contacts with the bottom surface at the transition: this is shown in Fig. 6, where we
clearly see two peaks. Such a bimodal distribution is the hallmark of a first-order tran-
sition. Hence the phase diagram in Fig. 5, which mimics the two-dimensional directed
walk phase diagram, was confirmed.

3.3 Force diagram for the slab (d = 3)

The force has also been studied using both Monte Carlo and exact enumeration tech-
niques in [15,17]. It was found via exact enumeration data in [15] that considering
b = 1 the force was positive (repulsive) for all a and decreases as a increases. The force
was then was scaled with the factor w1+1/ν , so as to check if Eq. 3.4 can be extended
to other values of a and b. One would expect that it could indeed be extended to all
parts of the desorbed phase, i.e. 0 ≤ a, b < 2, and, perhaps, to the phase boundaries
of this region. The scaled force w1+1/ν F was observed to weakly collapse for b < ac.
Clearly corrections to scaling were still evident as finite length walks and small widths
were used in the simulations. Using the same types of data the line a = b was also
examined and it was found that the force was repulsive for a � ac and attractive for
a > ac. Along the line a = b the scaled force w1+1/ν F converged more quickly to a
non-zero constant for a � ac, as the width was increased, than for the line b = 1. For
a > ac the scaled combination did not converge.
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In [17] the regions of attractive and repulsive forces were examined using exact
enumeration data for n ≤ 22 and w ≤ 8. Using an analysis of the ratio

Rn(a, b;w) = √
Zn(a, b;w)/Zn−2(a, b;w) (3.1)

and the related quantity

R′
n(a, b;w) = Rn(a, b;w) − √

Qn(a)/Qn−2(a), (3.2)

where Qn(a) is the partition function for the half-space problem the following results
were found. There exists a single zero-force curve, as in Fig. 5, that is conjectured to
go through the point (ac, ac). It would seem to be asymptotic to the lines a = 1 and
b = 1. For small a and b to the left of this curve the force is repulsive while to the right
the force is attractive. From the data it was deduced that for a ≤ ac, b ≤ ac the force
is repulsive and obeys the Daoud–deGennes scaling as in Eq. 3.4. It was inferred that,
as in the integrable model [14], for other values of a and b the force decays exponen-
tially fast in the width. In this way the force diagram for the cubic lattice self-avoiding
walk model has the same structure as the square lattice directed walk model described
above. A numerical estimate of the zero-force curve was obtained in [17].

3.4 Scaling theory in general dimensions

In this section we summarise scaling hypotheses [17] for the free energy and the force
between the walls in the high temperature and critical regimes a, b ≤ ac. Following
Eq. 1.7 it is expected that for this part of the parameter space the force applied by the
walk on the walls as a function of the width is expected to be a power law. It is not
expected that standard scaling arguments hold in the low temperature regimes where
the force is predicted to fall off exponentially with the width as mentioned above.

The fixed width scaling (1.12) can be reconciled with the infinite width scaling
(1.11) using the hypothesis of a scaling function in an appropriate scaling variable.
Since walks in a half-space typically extend out from the surface an amount propor-
tional to nν , where ν is the three-dimensional value of the radius of gyration exponent,
one can conjecture that this scaling variable should be nν/w. It was conjectured [17]
that the scaling form of the free energy is

κn(a, b;w) ∼ log µ3 + (γ1 − 1)
log n

n
+ 1

n
K(nν/w) (3.3)

as n, w → ∞ with nν/w fixed, and γ1 taking on the appropriate half-space value
depending on whether the value of a is ac or less. It is important to understand that
the scaling function depends on whether the underlying infinite-slit system is critical
or not as the temperature is varied. Hence there are four different scaling functions:
one for a, b < ac, one for a = ac, b < ac, one for a < ac, b = ac and one for
a = ac, b = ac.

123



126 J Math Chem (2009) 45:113–128

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  0.5  1  1.5  2

S
ca

lin
g 

F
un

ct
io

n

w=12
w=16
w=20
w=24
w=28

nν /w
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The values µ3 = 4.684, ν = 0.588 and (γ1 − 1) = −0.32 were used

The scaling of the force Fn(a, b;w) can be found by using

Fn(a, b;w) ∼ ∂

∂w
(scaling form for κn(a, b;w)) (3.4)

and so it was concluded that a scaling form for the force would therefore be

Fn(a, b;w) ∼ 1

n(1+ν)
F(nν/w) as n, w → ∞, (3.5)

where

F(x) ∼ cx1+1/ν as x → ∞. (3.6)

Hence the force exert by a macroscopic polymer F(a, b;w) scales as in Eq. 1.7 for
all a, b ≤ ac.

To confirm the above picture the scaling function of the free energy was studied at
three points in the (a, b)-plane: (0.5, 0.5) (point A), (0.5, bc) (point B), and (ac, 0.5)

(point C)—see Fig. 5. In Fig. 7 the scaling function is plotted by using the assumption
of Eq. 3.3 with appropriate exponent values at point A, (a, b) = (0.5, 0.5). It is clear
that the scaling assumption is confirmed by the results. Similar results were reported
in [17] for points B and C.

Interestingly, while K is monotonic at points A and C , it was found that it is
distinctly unimodal at point B. It was concluded that at points A and C , the polymer
exerts a repulsive force on the walls at all lengths and widths. Whereas at point B there
is a combination of length and width such that the free energy has derivative (with
respect to w) equal to zero. At point A the interactions with both confining walls are
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repulsive and the entropy loss due to confinement leads to a repulsive force. Point C
corresponds to a critical value of the attraction at the wall where the walk is tethered
and there is no attractive force with the other wall, so the force is repulsive. At point
B the walk is tethered to one wall but attracted to the other. If n → ∞ at fixed w it is
known rigorously that the force is repulsive and this corresponds roughly to the case
where nν/w >> 1. If nν << w the walk extends to allow vertices in the top wall
and this leads to an attractive force. The results at point B show new and qualitatively
different behaviour from that found in studies where a = b or b = 1 [3,9–13].

4 Discussion

We have reviewed recent work [14–17] on self-avoiding walks confined between walls
with which they interact via a contact potential that may be different for the two walls.
Such a situation, named the infinite slab, differs from both the case of adsorption of
a polymer on one wall and a polymer confined between two non-interacting walls in
significant ways. This work [15,17] has conjectured a full phase diagram and also
delineated the types of forces between the walls in all regions of the parameter space.
These conjectures mimic the exact results found in the two-dimensional integrable
model that has been analysed [14]. A scaling theory [17] has also been conjectured. It
would be of some interest to derive the corresponding scaling theory in the integrable
case [23].
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